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Abstract
Background
Tapestri is a high-throughput single-cell DNA analysis platform that leverages 
droplet microfluidics and multiplex-PCR based targeted sequencing approach. 
Often times in droplet-based protocols, cell doublets are  an issue which limits cell 
throughput and results in spurious signals which contribute to false positives in 
genotyping. To address this issue, we here present a doublet identification tool 
based on deep neural networks.

Methods
We processed 60 samples of Raji : K562 cell line mixture (50%:50%) each via 
Tapestri. Four known loci that are genotypically distinct between the two cell lines 
assigned each cell to K562, RAJI or a doublet. We also used fluorescent images of 
cells to confirm the doublet rate. These data are used as ground truth for our 
classifier.

We next train neural networks on a binary classification label using the ground 
truth on the amplicon-cell read matrix. We set up a densely connected neural 
network classifier using tensorflow. The number of hidden layers in the classifier is 
equal to the number of amplicons in the targeted panel. We apportion data from 
the 60 samples into training and test datasets. We train and test separately on 
multiple replicates of experiments. The hyperparameters were further optimized 
for low and high performing amplicons since their distribution of reads arenoisier. 
To improve accuracy, we introduced artificial doublet by randomly sampling 
barcodes without replacement from the pool and adding to the pool. Results show 
detection of ~50% of doublets confirmed by ground truth. Further training with 
more cells and hyper-parameter optimization will further improve accuracy.

Experimental Steps and Truth Data 
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Results and Conclusions 

With cross validation we are able to achieve ~99% AUC. Our cell mixing data of 
~400k cell show significant performance in terms of accuracy. Further optimization 
in network architecture and dropout would improve the accuracy. Doublet detection 
from read count matrix without knowing genotype would significantly improve the 
throughput of Tapestri System. 
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Locus K562 RAJI REF ALT

chr4_55599436 2 0 T C

chr17_7578523 2 0 T TG

chr16_55770629 2 0 C T

chr14_56969005 2 0 C T

chr7_148504818 0 1 A G

chr17_7577581 0 1 A G

chr17_7578211 0 1 C T

chr6_17076917 0 1 ATAAG A

Distinguishing mutations to 
identify double truth

Deep Learning Architecture
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Each cell has multiple amplicon read count data as 
features. Input layer contains all amplicons. A single 
hidden layer with 8 nodes were chosen.

T-SNE plot of amplicon read count. Doublet 
truth is generated by genotyping. Doublets are 
not localized to any cluster
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AUC-ROC curve shows the high performance 
of our model. 

Evaluation of different models with increasing 
number of hidden layers. We evaluated multiple 
models with increasing number of layers. model_1 has 
a single layer and model_9 has 9 layers. The accuracy 
and validation loss data suggests model_1 has better 
performance
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