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         IN THE SPOTLIGHT    
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  Summary: In this issue, McMahon and colleagues demonstrate that secondary clinical resistance to the FLT3 
inhibitor gilteritinib in relapsed acute myeloid leukemia is often polyclonal and commonly mediated by hetero-
geneous mutations that activate downstream RAS–MAPK pathways. These fi ndings and recent data from others 
indicate that emergence of multiple clones, each with distinct mechanisms of resistance, is a common fi nding at 
secondary failure of single-agent–targeted therapies for relapsed leukemias. 

See related article by McMahon et al., p. 1050 (2).     

 Recurrent activating mutations in the transmembrane 
growth factor receptor FLT3 represent one of the most fre-
quent and prognostically important molecular abnormalities 
in acute myeloid leukemia (AML). The FDA approvals of small-
molecule–targeted inhibitors of FLT3 kinase activity have 
changed practice. Midostaurin in combination with induction 
chemotherapy is now standard for initial therapy of FLT3-
mutant AML. For relapsed or refractory FLT3-mutant AML, 
the second-generation FLT3 inhibitor gilteritinib was FDA-
approved on November 28, 2018. Although gilteritinib mono-
therapy more than doubles the response rate achieved with 
standard chemotherapy, secondary resistance was inevitable, 
occurring within months despite ongoing therapy ( 1 ). In this 
issue of  Cancer Discovery , McMahon and colleagues leverage 
single-cell technologies and make the striking observation that 
polyclonal resistance, not fully evident using bulk sequencing 
approaches, underpins tumoral adaptation to FLT3-targeted 
therapy in the majority of cases relapsing on gilteritinib ( 2, 
3 ). These studies highlight the clinical limitations of targeted 
drug monotherapy and strengthen the need to rapidly acceler-
ate development of multidrug combination approaches. 

 Mechanisms of resistance to type II FLT3 inhibitors 
(quizartinib and sorafenib), which bind to the inactive 
FLT3 conformation, have been reported previously ( 3, 4 ). 
Although polyclonal on-target mutations affecting the FLT3-

D835 kinase domain or the FLT3-F691L gatekeeper residues 
were observed, the capacity to discover off-target convergent 
mechanisms of resistance was technically limited ( 4 ). Recent 
advances in microfl uidic single-cell encapsulation and mas-
sively parallel single-cell PCR-based barcoding now enable 
rapid, high-throughput characterization of cooperating and 
subclonal molecular processes in thousands of single cells 
( 5 ). McMahon and colleagues applied targeted sequencing of 
hotspot mutations (in  ASXL1, DNMT3A, EZH2, FLT3, GATA2, 
IDH1, IDH2, JAK2, KIT, KRAS, NPM1, NRAS, PTPN11, RUNX1, 
SF3B1, SRSF2, TP53, U2AF1 , and  WT1 ) at the single-cell level 
to investigate secondary resistance among a cohort of 41 
patients treated with the type I FLT3 inhibitor gilteritinib 
in two early-phase clinical trials. Gilteritinib binds to both 
active as well as inactive conformations of FLT3 and has an 
extended spectrum of activity that includes inhibition of 
both FLT3-D835 and FLT3-F691 variants  in vitro . 

 In contrast to previous studies with other FLT3 inhibitors, 
the dominant observation in this study was treatment-emer-
gent off-target mutations rather than on-target mutations 
in FLT3. In 15 of 41 cases, activating RAS–MAPK pathway 
mutations were found in branching subclones of the original 
FLT3-mutated clone, with multiple competing RAS-mutant 
subclones emerging in parallel within the same leukemic 
sample in all four cases subjected to detailed single-cell anal-
ysis. The authors provide functional confi rmation of the 
ability of two  NRAS  mutations to confer resistance to high 
concentrations of gilteritinib in cell line model systems. Less 
common activating RAS/MAPK pathway mutations were also 
found at clinical progression in  PTPN11, CBL , and  BRAF . New 
 BCR–ABL1  fusions were found in two additional patients. In 
some patients, as well as multiple  RAS  subclones expanding 
within the polyclonal FLT3-ITD population, parallel intratu-
moral expansion of FLT3 wild-type clones bearing  IDH2  and 
 SF3B1  mutations was also evident at relapse. 

 In 5 of 26 cases lacking RAS–MAPK pathway muta-
tions, gilteritinib treatment failure was associated with on-
target FLT3-F691L gatekeeper mutations, suggesting this 
mechanism was suffi cient to confer resistance to gilteritinib 
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in vivo. In vitro studies showed that suppression of FLT3-
F691L was dose-dependent, with higher concentrations being 
required for activity against FLT3-F691L than FLT3-ITD. 
They speculate that FLT3-F691L–mediated resistance may be 
most likely to be observed in patients receiving lower doses of 
gilteritinib, whereas resistance conferred by activating NRAS 
mutations may occur even when drug exposure is high. A 
further subset of patients (5/41) relapsed without evidence 
of the hallmark FLT3 lesion, indicating clonal emergence of 
non–FLT3-dependent AML clones as an alternative resistance 
mechanism. In these FLT3 wild-type relapse cases, activating 
RAS/MAPK mutations were found in every sample, but the 
subclonal architecture was not studied in detail. Expansion of 
non-FLT3 clones was also reported in a previous study utiliz-
ing a whole-exome approach to study resistance to another 
type II FLT3 inhibitor, crenolanib (6). In that study, rising 
variant allele frequencies of mutant IDH2, BCOR, CEBPA, and 
ASXL1 emerged at relapse. The involvement of mutations in 
these genes which regulate metabolism and/or gene expres-
sion suggest that epigenetic mechanisms may also play a role 
in mediating resistance to FLT3-targeted therapies.

In the current study of McMahon and colleagues, poly-
clonal relapse was observed in all four cases subjected to 
detailed single-cell analysis, and could be inferred from 
variant allele frequencies in several others. The concurrent 
emergence of multiple subclones displaying independent 
acquisition of distinct mechanisms of resistance seems to be 
a common theme when small-molecule–targeted therapies 
are applied to leukemias failing prior chemotherapy. Simi-
lar polyclonal heterogeneity has been reported recently for 
IDH2-mutant relapsed AML treated with the mutant IDH2 
inhibitor enasidenib (7), and for relapsed chronic lympho-
cytic leukemia treated with the BCL2 inhibitor venetoclax 
(8). It is tempting to speculate that mutagenic DNA damage 
inflicted by previous therapy may increase clonal complexity 
at initial relapse, which in turn predisposes to the parallel 
emergence of several competing subclones during ongoing 
selection pressure with targeted monotherapy.

What do these new observations mean clinically? The first 
conclusion is that the management of patients with relapsed 
FLT3-aberrant AML using FLT3 inhibitors is a lot more compli-
cated than previously imagined, with different FLT3 inhibitors 
likely to be associated with distinct patterns of resistance. For 
sorafenib and quizartinib failures dominated by kinase domain 
mutations, gilteritinib or novel irreversible FLT3 inhibitors 
may continue to have activity. For gilteritinib or midostaurin 
failures characterized by RAS mutations, it is probable that 
other FLT3 inhibitors will lack clinically sustainable activity, 
and alternative drugs targeting the RAS–MAPK axis will be 
required. Furthermore, the ideal of precision medicine, match-
ing targeted therapy very specifically to an identified mutation, 
may prove naïve in this setting, given the complexity of clonal 
architecture identified using single-cell technologies, and the 
insensitivity of bulk sequencing to identify rare subclones.

Future research will therefore need to determine how best 
to eliminate all mutant clones most likely associated with pat-
terns of resistance associated with particular FLT3 inhibitors. 
Although the RAS–MAPK pathway has now emerged as an 
important target for patients receiving gilteritinib, it remains 
unclear whether the best strategy to target this pathway is 

either preemptively upon initiation of gilteritinib therapy, or 
adaptively at the time of molecular or clinical progression. 
Alternatively, FLT3 inhibitors in combination with intensive 
combination chemotherapy as initial therapy for AML may 
be more effective, as reflected in the approval of midostaurin 
for this indication. Preliminary studies of paired diagnosis–
relapse samples from patients with FLT3-mutant AML treated 
with midostaurin chemotherapy indicate that almost half the 
patient population had detectable FLT3-ITD absent at relapse, 
in contrast to the persistence of FLT3 mutation at progres-
sion in the vast majority of patients receiving FLT3 inhibi-
tor monotherapy (9). Combining gilteritinib with intensive 
chemotherapy appears feasible and effective, with composite 
complete remission rates of over 90% reported in a preliminary 
phase Ib study (10). A randomized international trial led by 
HOVON/AMLSG comparing gilteritinib and midostaurin in 
combination with first-line chemotherapy is now under way to 
determine whether a more potent FLT3 inhibitor, such as gilter-
itinib, will lead to enhanced survival in this patient population.

The listing of two FLT3 inhibitors by the FDA for AML 
will ensure that this class of drugs is investigated in combi-
nation with a growing array of novel agents emerging onto 
the clinical stage. The recent insights into drug resistance 
mechanisms made possible by single-cell technologies are 
beginning to inform clinical trial design, and should encour-
age the routine incorporation of prospective collection of 
viable tumor cells into future protocols. Compared with 
light microscopy, flow cytometry or even panel-based bulk 
sequencing, rich insights into drug resistance mechanisms 
are now achievable using the perspective of a “single-cell 
lens.” In the near future, detailed correlations between adap-
tive changes at the DNA, RNA, and protein level will likely 
reveal additional molecular pathways to polyclonal drug 
resistance, both genetic and epigenetic in nature. Our greater 
challenge as we enter this exciting era of targeted AML 
therapies is to develop practical strategies able to circum-
vent resistance and thereby translate these new insights into 
improved clinical outcomes.
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