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Abstract Sensitivity and specificity on titration experiment
Background p——
The Tapestri single-cell DNA sequencing platform contains a small number of errors from a) | %EITor corfected bases b) | -
polymerase incorporations, structure induced template switching, PCR mediated T N F
recombination or DNA-damage, and errors from sequencing. These errors can range from i T —
0.5% to 2% depending on the sequencer. To improve variant calling and minimal residual - .
disease (MRD) detection we developed a novel consensus sequence-based method for , T
correcting the errors and reducing the false-positive rates.
Methods

Here we present a model to correct base position errors in Tapestri single-cell DNA analytical
workflow. The error correction method involves 2 steps. First, we train the model with cell BAM

. . . . : . : a). 4 different cell lines PC3, RAJI, DU145 and b). High sensitivity in most of the variants.
files from multiple panels. A pileup is generated around a mismatch position with k-1/2 bases SKMEL28 were mixed at different titrations. There were 3 different FN's that can be
on both sides. During training, a batch of normalized pileups and true reference bases are Cells were subsampled randomly from each improved by further optimization.

: : : cell line. Error correction was applied to the
feed into NN-based model. For each batch, error is calculated between predicted bases and reads and data from before and after were
true reference bases. Gradients of this error are calculated with respect to weights of each analyzed for sensitivity and specificity. ~25%

layer. The gradients are then used to update the weight of the model in a back propagation reduction in the total number of variants.

step. Once a validation accuracy reaches, the trained model and base transition matrix are

used to predict a likelihood of a base on given position. If prediction is the same as reference,

the model corrects observed non-reference base to reference base. To filter out the noisy Results on PBMC sample with known truth
reads before passing the data to variant caller, we suppress the quality scores of reads having

very low coverage.

a) - BnonEC b)
To validate this method, we used two different targeted panels on a Latin square model system — variant 1] 893 893
(4 cell line mixtures with 98.4%, 1%, 0.5% and 0.1% dilutions) with known truth mutations. We ) variant 2) 875 877
ran the Tapestri analytical workflow with and without error correction. With the error correction £ lellEt s S0 | 25
pipeline, we were able to significantly reduce our false positive rates while maintaining our > - Vi’iﬂtg : :
cgn o vari
sensitivity. 5.
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Error correction workflow using DNNs

a and c) Two clinical samples were processed through analytical pipeline. Frequency of the variants were
counted and compared to before and after error correction. Overall error correction resulted in a decrease
in the number of observed variants

b and d) The true variants were known from bulk sequencing. 4/5 of the variants showed same sensitivity
before and after. There is one variant with low sensitivity.

Reads from sequencer
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a # of exam cy (% To validate this method, we used two different targeted panels on a Latin square model
o} . . . . .
A kot 26 o s system with PBMC samples with known truth mutations. We also performed titration
-O experiments of 4 cell line mixtures with 98.4%, 1%, 0.5% and 0.1% dilutions. We
Accuracy processed the samples through Tapestri Platform and sequenced over multiple lllumina
sequencers (Hiseq 2500, Miseq). We ran the Tapestri analytical workflow with and
without error correction. With the error correction pipeline, we reduced our false positive
rates by ~25% while maintaining high sensitivity. Further optimization to improve the
sensitivity is currently in progress.
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