

Error Correction in Single-Cell DNA Sequencing: Finding Rare Allele for MRD Clone

Dong Kim¹, Manimozhi Manivannan¹, Sombeet Sahu¹, Shu Wang¹, Saurabh Gulati¹, Nianzhen Li¹, Adam Sciambi¹ and Nigel Beard¹ Mission Bio, South San Francisco, CA, USA

Conflicts of interest: D.K., M.M., S.S., S.W., S.G., A.S., N.L., A.P., H.V., N.B. are employees and shareholders of Mission Bio, Inc.

Abstract

Background

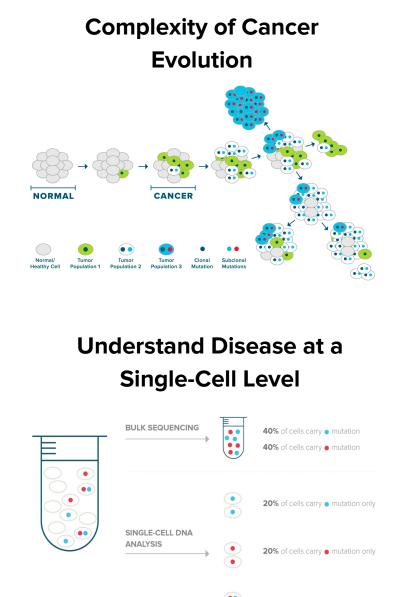
The Tapestri single-cell DNA sequencing platform contains a small number of errors from polymerase incorporations, structure induced template switching, PCR mediated recombination or DNA-damage, and errors from sequencing. These errors can range from 0.5% to 2% depending on the sequencer. To improve variant calling and minimal residual disease (MRD) detection we developed a novel consensus sequence-based method for correcting the errors and reducing the false-positive rates.

Methods

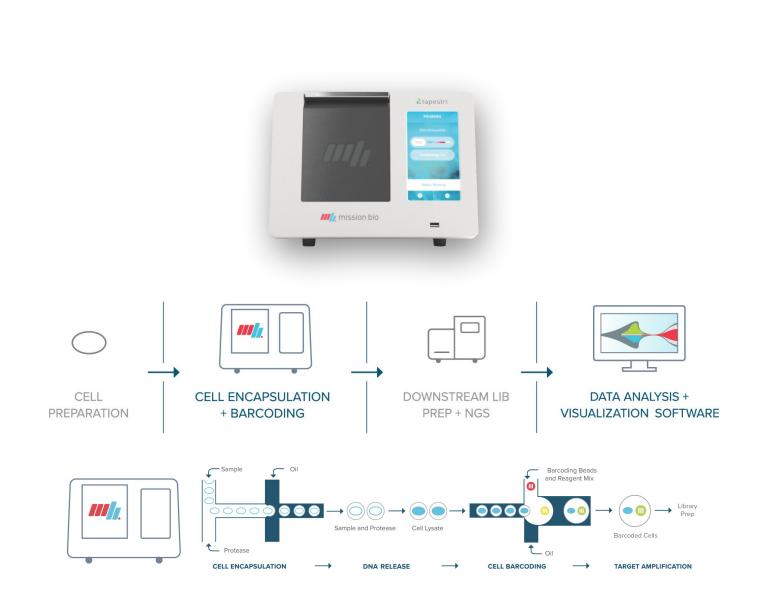
Here we present a model to correct base position errors in Tapestri single-cell DNA analytical workflow. The error correction method involves 2 steps. First, we train the model with cell BAM files from multiple panels. A pileup is generated around a mismatch position with k-1/2 bases on both sides. During training, a batch of normalized pileups and true reference bases are feed into NN-based model. For each batch, error is calculated between predicted bases and true reference bases. Gradients of this error are calculated with respect to weights of each layer. The gradients are then used to update the weight of the model in a back propagation step. Once a validation accuracy reaches, the trained model and base transition matrix are used to predict a likelihood of a base on given position. If prediction is the same as reference, the model corrects observed non-reference base to reference base. To filter out the noisy reads before passing the data to variant caller, we suppress the quality scores of reads having very low coverage.

To validate this method, we used two different targeted panels on a Latin square model system (4 cell line mixtures with 98.4%, 1%, 0.5% and 0.1% dilutions) with known truth mutations. We ran the Tapestri analytical workflow with and without error correction. With the error correction pipeline, we were able to significantly reduce our false positive rates while maintaining our sensitivity.

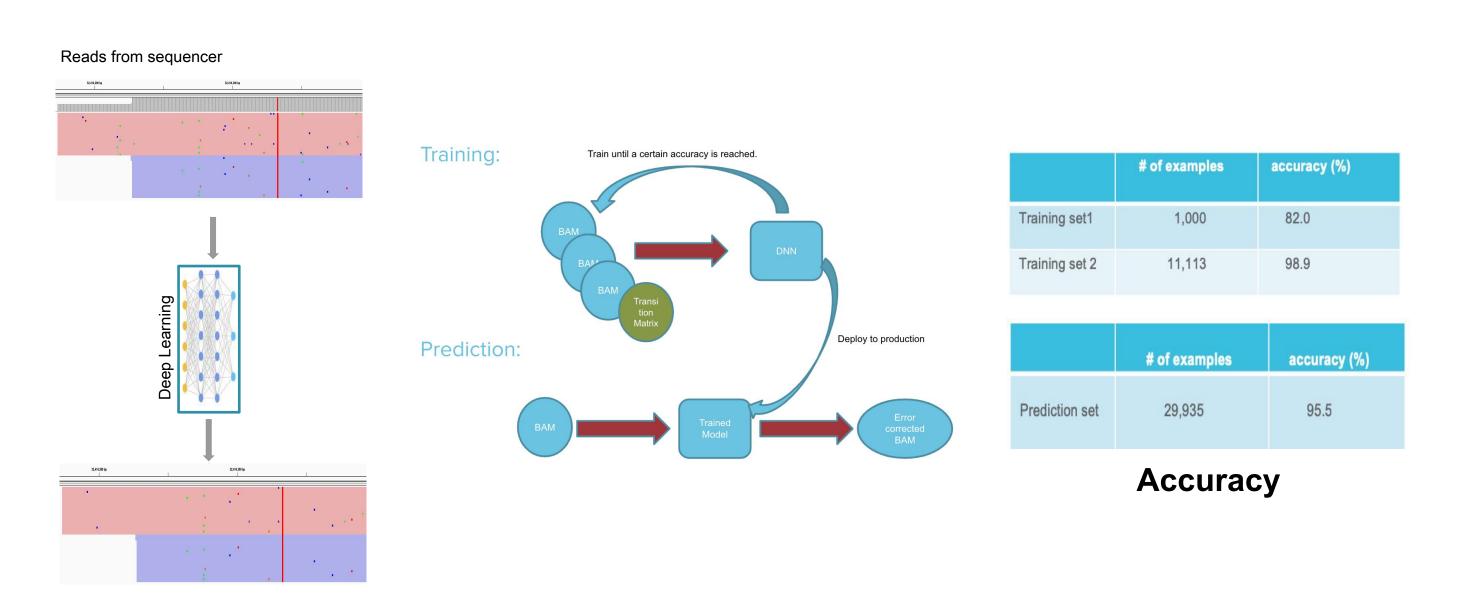
Why Single-Cell?



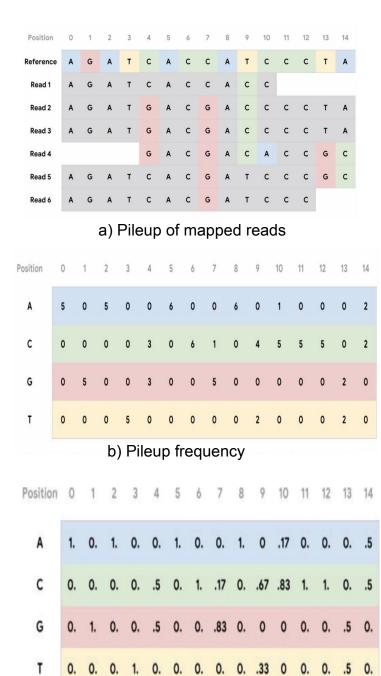
Mission Bio Tapestri Workflow Overview



Error correction workflow using DNNs



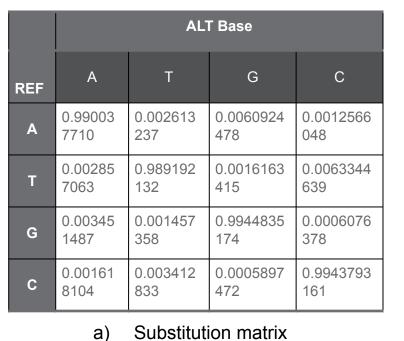
Preparing input data for CNN



a) For each aligned read in a BAM file, a pileup is generated around a mismatch position with n flanking bases to the left and right. b) Frequency of A,C,G, and T for each location in a window. c) Frequencies of each base are normalized by the total number of bases appearing on a given position.

c) Normalized pileup

Generating substitution matrix

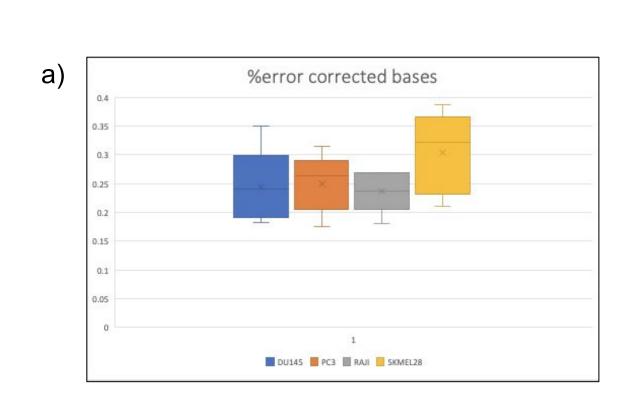


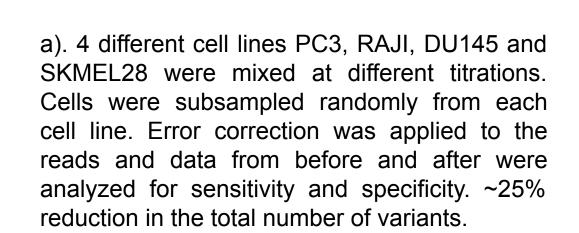
a). Substitution rates are calculated by counting number of bases for a given reference base for valid loci.

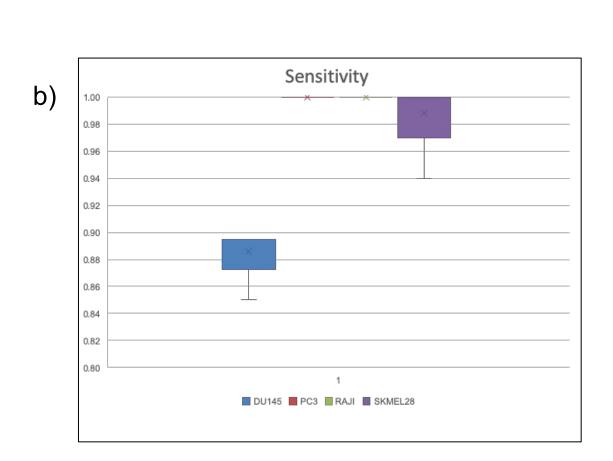
b) Num of bases vs avg deviation in error

b). We observed significant variation in the substitution rates between runs and hence fixed matrix would not work. Substitution rates starts plateauing after sub sampling 4M reads

Sensitivity and specificity on titration experiment

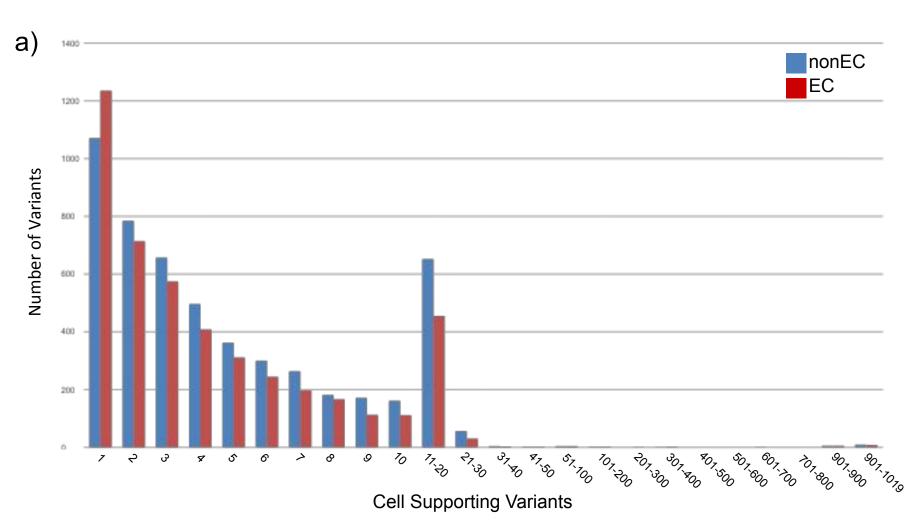




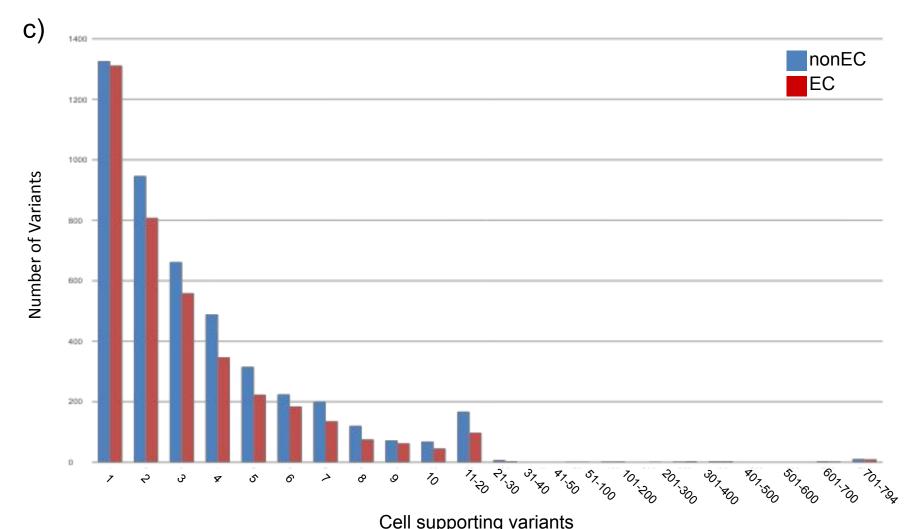


b). High sensitivity in most of the variants. There were 3 different FN's that can be improved by further optimization.

Results on PBMC sample with known truth



I _n \			
b)		before	after
	variant 1	893	893
	variant 2	875	877
	variant 3	867	234
	variant 4	2	2
	variant 5	1	1



	before	after
variant 1	235	234
variant 2	649	651
variant 3	656	186
variant 4	228	226
variant5	19	16

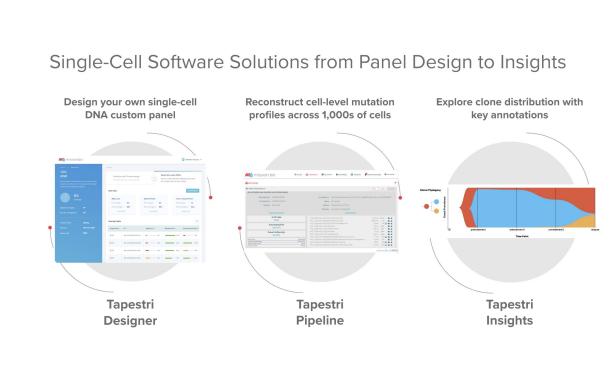
a and c) Two clinical samples were processed through analytical pipeline. Frequency of the variants were counted and compared to before and after error correction. Overall error correction resulted in a decrease in the number of observed variants

b and d) The true variants were known from bulk sequencing. 4/5 of the variants showed same sensitivity before and after. There is one variant with low sensitivity.

Results and Conclusions

To validate this method, we used two different targeted panels on a Latin square model system with PBMC samples with known truth mutations. We also performed titration experiments of 4 cell line mixtures with 98.4%, 1%, 0.5% and 0.1% dilutions. We processed the samples through Tapestri Platform and sequenced over multiple Illumina sequencers (Hiseq 2500, Miseq). We ran the Tapestri analytical workflow with and without error correction. With the error correction pipeline, we reduced our false positive rates by ~25% while maintaining high sensitivity. Further optimization to improve the sensitivity is currently in progress.

Tapestri Solution



				TAPEST	RI SINGLE-	CELL DN	A PANE	LS				
				# genes	# amplicons	Target re	gions cove (Kbp)		Panel Uniformity			
	AM	IL Panel		19	50		~8.5		>90%			
	CL	CLL Panel 34		34	286	~54.9 >9		>90%				
	Му	Myeloid Panel 47 330		330	~66.0 >80%		>80%					
	Tur	nor Hotsp	ot Panel	59	244	3	~40.0 >80%		>80%			
	59 GENI	ES - TUM	OR HOTSP	OT PANEL				47	-GENE MYE (Available		EL	
BL1	CSF1R	FGFR1	IDH2	MLH1	RB1		ASXL1	DNMT3A	IDH1	MYC	PTPN11	STA
KT1	CTNNB1	FGFR2	JAK1	MPL	RET		ATM	ERG	IDH2	MYD88	RAD21	STA
LK	DDR2	FGFR3	JAK2	MTOR	SMAD4		BCOR	ETV6	JAK2	NF1	RUNX1	TE
PC	EGFR	FLT3	JAK3	NOTCH1	SMARCB1		BRAF	EZH2	KDM6A	NPM1	SETBP1	TP
AR	ERBB2	GNA11	KDR	NRAS	SMO		CALR	FLT3	KIT	NRAS	SF3B1	U2
TM	ERBB3	GNAQ	KIT	PDGFRA	SRC		CBL	GATA2	KMT2A	PHF6	SMC1A	W
RAF	ERBB4	GNAS	KRAS	PIK3CA	STK11		CHEK2	GNAS	KRAS	PPM1D	SMC3	ZRS
DH1	ESR1	HNF1A	MAP2K1	PTEN	TP53		CSF3R	HRAS	MPL	PTEN	SRSF2	
DK4	EZH2	HRAS	MAP2K2	PTPN11	VHL							
(N2A	FBXW7	IDH1	MET	RAF1					34-GENE	CLL PANE	L	
		20 CENI	E AML DA	NEL			ATM	CD79E	EZH2	MAP2K1	PAX5	
		20-GEN	E AML PA	NEL			BCOR	CHD2	FAT1	MED12	PLCG2	
SXL1	GAT	A2	KIT	PTPN11	TET2		BIRC3	CREBBI	P FBXW7	MYD88	POT1	
AETMI	IDH	-11	KRAS	RUNX1	TP53		BRAF	CXCR4	KLHL6	NFKBIE	RPS15	
7H2	IDH	12	NPM1	SF3B1	U2AF1		BTK	DDX3X	KRAS	NOTCH1	SETD2	

Learn more about Mission Bio at our other posters at SCG

Poster	Session	Title			
P028	24th	Doublets Detection in Single Cell DNA-Sequencing using Deep Learning			
P031	24th	Co-detection of mutations and copy number variations in thousands of single-cells using an automated platform			
P034	24th	Using machine learning to optimize assays for single cell targeted DNA sequencing			
P093	24th	Single-cell Simultaneous Detection of DNA Genotype and Protein Expression			
P099	24th	Error Correction in single-cell DNA sequencing: Finding rare allele for MRD clone			
P109	25th	A high throughput single cell workflow for paired genomic and phenotypic analysis			
P112	25th	A triomic single-cell high-throughput microfluidic workflow for resolution of genotype-to-phenotype modalities: parallel analysis of DNA, RNA and protein			