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Abstract
Background

High throughput single-cell DNA sequencing allows for detection of rare mutations
in cells and identification of sub-clones defined by co-occurrence of mutations. The
big challenge with multiplex sequencing at single-cell level is the non-uniform

amplification which results in inadequate coverage of mutations of interest. To

address this chal
amplicon design for
prediction.

uniform amplification by making

Methods

10 different panels were designed with amplicons spanning a wide range of design
properties. The tested amplicons are classified into low, average or high performer
amplicons based on their normalized reads-per-cell value. The design properties of
the amplicons are the features. Highly correlated features were identified and

enge, we developed a machine learning engine to optimize
reliable performance

pruned. We used random forest classifier to calculate feature importance. Top
features were identified using two different feature selection methods. We then

analyzed the range of the top features for each class and their significance of
variance between classes. These ranges were then used as parameters in the assay

design pipeline underlying Tapestri Designer.

Results

We designed three different panels using the new pipeline. We achieved high panel

performance of 97%, 92% and 88% across the three panels. The new parameters
resulted in 0-20% improvement in panel uniformity. We are working on further
optimizing the performance prediction engine by using different ML classification

models with K-fold cross validation, training using larger group of amplicons and

optimizing features using combination of properties.
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Single Cell Targeted Panel: Quality, Flexibility, Scalability

Quality: High molecular capture Flexibility: Choose how many  Scalability: Number of cells

rate and panel uniformity cells and the size of panel and targets scale over time Application Hematology Solid Gqume
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Barcode read structure

On beads: Barcodes + common sequences

In solution: Target-specific forward primers and reverse primers

the quality of panel

ML approach to improve

Identify important features impacting

amplicon performance
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A. To identify important amplicon and primer properties that impact amplicon performance in Tapestri
targeted sequencing assays, we used random forest classifier to calculate feature importance of
properties. Amplicons are classified into low-performer, OK-performer and high-flyer based on their
normalized reads-per-cell value. Common top features identified using two feature selection methods
were selected for carry-on analysis. B. Correlation of numeric features identified highly correlated
features. Only independent features were kept for feature distribution analysis and building prediction
model. C. Box plot of top feature distribution.
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KNC and SVC model fit for different data size
A Combines large data size
B Small panel case 1 Small panel case 2
Selected amplicon features and performance data for 10 targeted panels were used to train and test
performance prediction model. A. Two ML classification model (KNC and SVC) with K-fold cross
validation were trained with 10000 splits of 70/30 for training/testing dataset split, while all splits keep
the same ratio of classes in both training and testing datasets. We also masked high-flyer or removed
high-flyer from data set to understand accuracy of predicting amplion performance passing the minimal
requirement at 0.2x mean. Average accuracy is 0.80-0.88 for large dataset. B. Small panels testing
dataset showed higher accuracy score at 0.90-0.98.
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A. Schematic workflow of using ML model to optimize amplicon
design. After design feature optimization, three testing panels
including a small mouse panel (31 amplicons), a medium hg19
panel (128 amplicons) and a large hg19 panel (287 amplicons)
were designed using new set of parameters. Multiple runs were
conducted for each panel. New designer achieves high panel
performance of 97%, 92% and 88% across the three panels. B.

Oligo tweaking impact on the
performance

New designer significantly improved amplicon performance and

uniformity in targeted assay design across different panel size and

genomic contents. 6 newly designed panels were sequenced.

Multiple runs were conducted for each panel. C. Schematic
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workflow of building performance prediction model to improve
assay performance and product development process.



