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Abstract

Background

High throughput single cell DNA targeted sequencing enables detection of rare mutations in cells and identification of
subclones defined by co-occurrence of mutations. The big challenge with multiplex sequencing at single cell level is the
non-uniform amplification of the targeted regions during PCR. This results in inadequate coverage of mutations of interest in
the panel and hence makes genotyping challenging. To address this challenge, we developed a machine learning engine to
optimize amplicon design for uniform amplification by making reliable performance prediction.

Methods

Multiple panels with various sizes were designed with amplicons spanning a wide range of design properties such as
amplicon GC, length, secondary structure prediction, primer specificity. These panels were synthesized and processed
through Tapestri single cell DNA platform. The tested amplicons are classified into low-performer, OK-performer and high
flyer based on their normalized reads-per-cell value. Design properties and property distribution of the amplicons and the
panel are the features. We used random forest classifier to calculate feature importance and analyzed the range of the top
features for each class and their significance of variance between classes. These ranges were then used as parameters in
the assay design pipeline. Next, we train machine learning models with performance data to develop a performance

prediction engine.

Results

To test the performance of the design pipeline with new parameters, we designed a small (31), medium (128) and large
(287) amplicon panel. Multiple runs were conducted for each panel with different cell types. We were able to achieve high
panel performance of 97%, 92% and 88% across the three panels. The new parameters resulted in ~10-20% improvement
iIn panel uniformity. We are working on further optimizing the performance prediction engine by using different ML
classification models with K-fold cross validation, training using larger group of amplicons and optimizing features using

combinations of properties.

Tapestri Workflow and Products

The Tapestri workflow
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Barcode read structure

On beads: Barcodes + common sequences
In solution: Target-specific forward primers and reverse primers

Barcoded Beads

Template DNA + Gene-Specific Primers (GSP)

ML approach to improve the quality
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Amplicon design algorithm for single cell targeted DNA sequencing

Identify important features impacting amplicon performance

» 40 : -h _ 50
Feature C

| Amp T ]
r t ] B AmpFeatur 008 C
AmpFeatur: 007 004 3 8
< c
] o
E E
o - — o
4 007 0 3 - [ = —l = - ’
a 1 | = -
. § 8
= -
m 006 054 009 059 2 -3
: 2 z
§ ; > 008 0 038
| r oot Amp ‘ - Nh . hgh
. by | Y LR . +
e Amp 002 014 006 022 009
0 %0 180 200 20 200 20
Amp w e - B Feature A Feature B
10

8
- | vt - 8 g
o e
008 049 015 059 059 E E
(<] -}

< | ] — % |

& ow - o — g v I

| e c J
& 8
o x
:

r . X% © 4 50

Feature D

A. To identify important amplicon and primer properties that impact amplicon performance in Tapestri targeted sequencing assays, we
used random forest classifier to calculate feature importance of properties. Common top features identified using two feature selection
methods were selected for carry-on analysis. B. Correlation of numeric features identified highly correlated features. Only independent
features were kept for feature distribution analysis and building prediction model. C. Box plots showing some of the identified predictive

features.

KNC and SVC model fit for different data size
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A. Selected amplicon features and performance data for 10 targeted panels were used to train and test performance prediction model. Two
ML classification model (KNC and SVC) with K-fold cross validation were trained with 10000 splits of 70/30 for training/testing dataset spilit,
while all splits keep the same ratio of classes in both training and testing datasets. Average accuracy ranges from 0.80-0.88 for large
dataset to 0.90-0.98 for small panels. B. Schematic showing workflow of using ML model to optimize amplicons performance. C. New
designer significantly improved amplicon performance and uniformity in targeted assay design across different panel size and genomic
contents (human and mouse genomes). 6 newly designed panels were sequenced. Multiple runs were conducted for each panel.

Results: DNA panel with RNA fusion amplicons
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Conclusions

The design pipeline developed with ML model generates panels that have more uniform amplification
across amplicons. It shows significant improvement of performance in panels for multiple genomes and
also of varying panel sizes.

Targeted approach of detection results in higher limits of detecting rare cell subpopulations

Tapestri Designer provides a robust pipeline for targeted panels across multiple analytes including
DNA (SNVs and CNVs), proteins and fusion.

Demonstrated the capabilities of Tapestri system and analytical pipeline to accurately characterize cell
types.
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