Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
X
Announcing the new Tapestri scMRD Assay for AML. Learn More
X
publication

Single-cell mutational profiling enhances the clinical evaluation of AML MRD.


Ediriwickrema, A. et al.
Blood Advances (2020)
Abstract

Although most patients with acute myeloid leukemia (AML) achieve clinical remission with induction chemotherapy, relapse rates remain high. Next-generation sequencing enables minimal/measurable residual disease (MRD) detection; however, clinical significance is limited due to difficulty differentiating between pre-leukemic clonal hematopoiesis and frankly malignant clones. Here, we investigated AML MRD using targeted single-cell sequencing (SCS) at diagnosis, remission, and relapse (n = 10 relapsed, n = 4 nonrelapsed), with a total of 310 737 single cells sequenced. Sequence variants were identified in 80% and 75% of remission samples for patients with and without relapse, respectively. Pre-leukemic clonal hematopoiesis clones were detected in both cohorts, and clones with multiple cooccurring mutations were observed in 50% and 0% of samples. Similar clonal richness was observed at diagnosis in both cohorts; however, decreasing clonal diversity at remission was significantly associated with longer relapse-free survival. These results show the power of SCS in investigating AML MRD and clonal evolution.



Authors

Ediriwickrema, A., Aleshin, A., Reiter, J.G., Corces, M.R., Köhnke, T., Stafford, M., Liedtke, M., Medeiros, B.C., Majeti, R.



VIEW

publication
Phenotypic signatures of immune selection in HIV-1 reservoir cells
Weiwei Sun
Nature
publication
Mutated cells mediate distinct inflammatory responses in clonal hematopoiesis
J. Brett Heimlich
BioRxiv
publication
scTAM-seq enables targeted high-confidence analysis of DNA methylation in single cells
Bianchi A
Genome Biology (2022)
publication
Single cell genotypic and phenotypic analysis of measurable residual disease in acute myeloid leukemia
Troy T. Robinson
BioRxiv (2022)
REQUEST QUOTE