Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.


Mission Bio’s Tapestri Platform Helps Elucidate Resistance Mechanisms to Lung Cancer Drugs in Nature Publication

Single-cell DNA sequencing helped reveal the evolution of resistance against KRAS inhibitor drug sotorasib through secondary mutations


SOUTH SAN FRANCISCO, November 23, 2021 — Mission Bio, the pioneer in high-throughput single-cell DNA and multi-omics analysis, today announced a publication in Nature led by researchers from Memorial Sloan Kettering Cancer Center (MSK) that could broaden the potential benefits for KRAS G12C inhibitors like sotorasib (brand name Lumakras) in patients with lung cancer and other solid tumors. Mission Bio’s Tapestri Platform empowered researchers to understand how resistance evolves against these lung cancer drugs by identifying secondary mutations within individual cancer cells that allowed them to bypass the therapeutic effect. 


Earlier this year, sotorasib became the first FDA-approved therapy directly inhibiting a mutation in the RAS family of oncogenes, which are implicated in a third of all cancers1. Sotorasib inhibits KRAS G12C in particular, which is found in 13% of patients with non-small cell lung cancers and is also common in other solid tumors like colorectal cancer. KRAS G12C inhibitors can halt disease progression for nearly 40% of patients with lung cancer carrying the mutation, but most of those who initially respond to the treatment eventually become resistant to it.


In the Nature paper titled “Diverse alterations associated with resistance to KRAS (G12C) inhibition,” the team led by Dr. Piro Lito, medical oncologist at MSK, first compared patient tumor samples before and after treatment with sotorasib, identifying a host of secondary mutations that arose during treatment in genes like KRAS, NRAS, MRAS, and BRAF.  But the mutations were identified using bulk next-generation sequencing (which mixes DNA from cells together), giving a limited understanding of how individual cells developed resistance.


At this point, the Tapestri Platform was used to better understand how mutations emerge in individual cells. Researchers found that the secondary mutations they identified from bulk sequencing often co-occurred with the targeted mutation (KRAS G12C) in the drug-resistant cells. These secondary mutations within the same cells were shown to circumvent the effect of target KRAS inhibitor therapy by upregulating other players in the pathway. 


Dr. Jorge Reis-Filho, Director of Experimental Pathology at MSK, whose lab contributed to this work, said, “KRAS inhibitors are exciting new therapeutic agents, and understanding the basis of resistance to these new agents is essential. Tapestri and single-cell DNA sequencing can uncover important nuances of resistance mechanisms, like co-occurring mutations, which may otherwise be missed by bulk sequencing.”


“Research like this is changing the landscape of cancer biology, which in turn is creating new pathways for precision cancer therapies,” said Yan Zhang, CEO of Mission Bio. “Without single-cell DNA sequencing, it would have been impossible to definitively measure the co-occurrence of mutations within cancer cells and understand the mechanisms of resistance at this granular level. It’s wonderful to see Tapestri enabling the future of cancer therapeutics.”


To find out how single-cell analysis can unravel the mechanisms that drive disease correction and disease progression, visit




About Mission Bio

Mission Bio is a life sciences company that accelerates discoveries and cures for a wide range of diseases by equipping researchers with the tools they need to better measure and predict our resistance and response to new therapies. Mission Bio’s multi-omics approach improves time-to-market for new therapeutics, including innovative cell and gene therapies that provide new pathways to health. Founded in 2014, Mission Bio has secured investment from Novo Growth, Cota Capital, Agilent Technologies, Mayfield Fund, and others. 


The company’s Tapestri platform gives researchers around the globe the power to interrogate every molecule in a cell together, providing a comprehensive understanding of activity from a single sample. Tapestri is the only commercialized multi-omics platform capable of analyzing DNA and protein simultaneously from the same sample at single-cell resolution.  The Tapestri Platform is being utilized by customers at leading research centers, pharmaceutical, and diagnostics companies worldwide to develop treatments and eventually cures for cancer. To learn more, visit


Media Contact

Consort Partners for Mission Bio

Mission Bio Launches Sample Multiplexing for Tapestri to Unlock Critical Single-Cell Insights for Oncology and Genome Editing Markets
Mission Bio Appoints Industry Veteran Brian Kim as CEO to Spearhead Single-Cell Genomic Solutions
Mission Bio Announces Over 20 Presentations Demonstrating the Utility of Tapestri Across AML, Multiple Myeloma, and Lymphoma at the 2023 ASH Annual Meeting
Mission Bio Announces High Precision Detection of Variants For Tapestri® Platform in NIST Genome Editing Consortium Initial Study